3-(5-SUBSTITUTED-2-FURYL)ACRYLIC ACIDS AND THEIR METHYL ESTERS. TRANSFER OF THE POLAR EFFECT OF THE SUBSTITUENT THROUGH THE ETHYLENE GROUP*

J.Kováč, J.Štetinová, †J.Surá, F.Špaček and R.Brežný

Department of Organic Chemistry,
Slovak Institute of Technology 88037 Bratislava

Received July 2nd, 1976

Apparent dissociation constants were determined for twelve 3-(5-R-2-furyl)acrylic acids in 50\% ethanol, 78% ethanol and 80% methyl cellosolve, as well as the constants of alkaline hydrolysis of ten methyl esters of 3-(5-R-2-furyl)acrylic acids in 60% aqueous acetone. The values obtained were correlated with σ_{p} and σ_{m} constants of substituents and the value of the transmission of polar effects through the ethylene group was determined.

In preceding papers we investigated the transfer of the polar effect of the substituent from benzene through the furan nucleus ${ }^{1,2}$, from furan through the benzene nucleus ${ }^{3,4}$, and from benzene through the furan nucleus and the ethylene group ${ }^{5}$. The aim of this paper is the establishment of the transfer effect of the influence of substituent from the furan through the ethylene group. The possibility of using Hammett's equation for five-membered heterocycles and the checking of its validity ${ }^{6-9}$ led to the determination of the ϱ-constant for 5 -substituted 2 -furancarboxylic acids on the basis of the measured $\mathrm{p} K_{\mathrm{A}}$ values and use of σ_{p}-constants of substituted benzoic acids $\left(\varrho=1.394\left(\right.\right.$ ref. ${ }^{6-8}$) , 1.41 (ref. ${ }^{10}$). Similarly, for the correlation of σ_{p} and $\log k_{\mathrm{h}}$ it was found that $\varrho=2.973$ (ref. ${ }^{6}$). In the series of 3 -($5-\mathrm{R}-2$-furyl)acrylic acids, where the substituent R is directly on the furan nucleus no such study has been carried out.

We have synthesized 3-(5-R-2-furyl)acrylic acids and their esters $I-X X V I$ (Table I). The synthesis of acids I (ref. ${ }^{11}$), II, VIII, $I X$ and $X I I$ was carried out by Doebner's method and $I I I-V I$ (ref. ${ }^{12,5,13,14}$) by Perkin's synthesis from corresponding aldehydes. Acetylation and nitration of 3 -(2-furyl)acrylic acid (III) was used for the preparation of the corresponding 5 -acetyl and 5 -nitro derivative, VII (ref. ${ }^{15}$) and X (ref. ${ }^{16}$), respectively. Attempts at the preparation of 3-(5-benzazole derivatives-

[^0]Table I
3-(5-Substituted-2-furyl)acrylic Acids and Their Methyl Esters

Compound ${ }^{a}$	$\begin{aligned} & \mathrm{R}^{1} \\ & \mathrm{R}^{2} \end{aligned}$	$\text { M.p. }{ }^{b}{ }^{\circ} \mathrm{C}$yield, \%	Formula (m.w.)	Calculated/Found		
				\% C	\% H	\% N
I	$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 154-155 \\ 84 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}{ }^{c} \\ (152 \cdot 1) \end{array}$	-	-	-
II	$\begin{aligned} & \mathrm{SCH}_{3} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 150-151 \\ 81 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}^{d} \\ (184 \cdot 2) \end{array}$	$\begin{aligned} & 52 \cdot 12 \\ & 52 \cdot 23 \end{aligned}$	$\begin{aligned} & 4 \cdot 34 \\ & 4 \cdot 42 \end{aligned}$	-
111	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 140-141 \\ 65 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}{ }^{e} \\ (138 \cdot 1) \end{array}$	-	-	-
IV	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 175-179 \\ 33 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}{ }^{f} \\ (214 \cdot 2) \end{array}$	-	-	-
v	$\begin{aligned} & I \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 159-60 \\ 64 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{IO}_{3}{ }^{g} \\ (264 \cdot 0) \end{array}$	-	-	-
VI	$\begin{aligned} & \mathrm{Br} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 178-179 \\ 67 \end{gathered}$	$\begin{gathered} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}{ }^{h} \\ (217.0) \end{gathered}$	-	-	-
VII	$\begin{aligned} & \mathrm{COCH}_{3} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 190-191 \\ 30 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}{ }^{i} \\ (180 \cdot 2) \end{array}$	-	-	-
VIII	$\begin{aligned} & \mathrm{COOCH}_{3} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 208-210 \\ 66 \end{gathered}$	$\begin{gathered} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5} \\ (196 \cdot 2) \end{gathered}$	$\begin{aligned} & 55 \cdot 04 \\ & 55 \cdot 17 \end{aligned}$	$\begin{aligned} & 4.07 \\ & 3.91 \end{aligned}$	-
IX	$\begin{aligned} & \mathrm{CN} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 181-183 \\ 70 \end{gathered}$	$\begin{gathered} \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{3} \\ (163 \cdot 1) \end{gathered}$	$\begin{aligned} & 58 \cdot 86 \\ & 58 \cdot 81 \end{aligned}$		
X	$\begin{aligned} & \mathrm{NO}_{2} \\ & \mathrm{H} \end{aligned}$	$242-243$ 75	$\begin{array}{r} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{5}{ }^{j} \\ (183 \cdot 1) \end{array}$	-	-	-
XI	$\begin{aligned} & \text { 2-Benzothiazolyl } \\ & \text { H } \end{aligned}$	$\begin{gathered} 243-244 \\ 37 \end{gathered}$	$\underset{(271 \cdot 3)}{\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}^{d}}$	$\begin{aligned} & 61 \cdot 92 \\ & 61.87 \end{aligned}$	$\begin{aligned} & 3.31 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 5 \cdot 11 \\ & 5 \cdot 11 \end{aligned}$
XII	$\begin{aligned} & \text { 3-Pyridyl } \\ & \text { H } \end{aligned}$	$\begin{gathered} 210-211 \\ 62 \end{gathered}$	$\underset{(2 \mathrm{C} 2 \cdot 2)}{\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{3}}$	$\begin{aligned} & 67 \cdot 86 \\ & 67 \cdot 79 \end{aligned}$	$\begin{aligned} & 4 \cdot 24 \\ & 4 \cdot 32 \end{aligned}$	$\begin{aligned} & 6.59 \\ & 6.55 \end{aligned}$
XIII	2-Benzoxazolyl H	$\begin{gathered} 163-164 \\ 8 \end{gathered}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{4}$	$\begin{aligned} & 65 \cdot 83 \\ & 65 \cdot 91 \end{aligned}$	$\begin{aligned} & 3.52 \\ & 3.65 \end{aligned}$	$\begin{aligned} & 5 \cdot 48 \\ & 5: 45 \end{aligned}$
XIV	$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 36-38 \\ 34 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}{ }^{k} \\ (166 \cdot 2) \end{array}$	-	-	-
$X V$	$\begin{aligned} & \mathrm{SCH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 36-37 \\ 120-121 / 0 \cdot 566^{t} \\ 64 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}^{d} \\ (198 \cdot 2) \end{array}$	$\begin{aligned} & 54 \cdot 20 \\ & 54 \cdot 16 \end{aligned}$	$\begin{aligned} & 5 \cdot 08 \\ & 5 \cdot 17 \end{aligned}$	-

Table I
(Continued)

Compound ${ }^{a}$	$\begin{aligned} & R^{1} \\ & R^{2} \end{aligned}$	$\begin{aligned} & \text { M.p., }{ }^{b}{ }^{\circ} \mathrm{C} \\ & \text { yield, \% } \end{aligned}$	Formula (m.w.)	Calculated/Found		
				\% C	$\% \mathrm{H}$	\% N
$X V I$	H CH_{3}	$87 / 0 \cdot 566^{e}$	$\begin{array}{r} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}{ }^{m} \\ (166 \cdot 2) \end{array}$	-	-	-
XVII	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 106-108 \\ 69 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}{ }^{n} \\ (228.24) \end{array}$	-	-	-
XVIII	I CH_{3}	$\begin{gathered} 81-82 \\ 61 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IO}_{3}^{o} \\ \quad(277 \cdot 0) \end{array}$	-	-	-
$X I X$	Br CH_{3}	$\begin{gathered} 62-63 \\ 63 \end{gathered}$	$\begin{gathered} \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}{ }^{p}(231 \cdot 1) \end{gathered}$	-	--	-
$X X$	$\begin{aligned} & \mathrm{COCH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 134-135 \\ 72 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \\ (194 \cdot 2) \end{array}$	$\begin{aligned} & 61 \cdot 79 \\ & 61 \cdot 69 \end{aligned}$	$\begin{aligned} & 5 \cdot 15 \\ & 5 \cdot 27 \end{aligned}$	-
$X X I$	$\begin{aligned} & \mathrm{COOCH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 144-145 \\ 77 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} \\ (210 \cdot 2) \end{array}$	$\begin{aligned} & 57 \cdot 08 \\ & 57 \cdot 17 \end{aligned}$	$\begin{aligned} & 4 \cdot 75 \\ & 4 \cdot 81 \end{aligned}$	-
$X X I I$	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 75-76 \\ 68 \end{gathered}$	$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}{ }^{q} \\ (195 \cdot 2) \end{gathered}$	$\begin{aligned} & 61 \cdot 47 \\ & 61 \cdot 54 \end{aligned}$	$\begin{aligned} & 6.66 \\ & 6.73 \end{aligned}$	$\begin{aligned} & 7 \cdot 17 \\ & 7 \cdot 11 \end{aligned}$
XXIII	$\begin{aligned} & \mathrm{CN} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 121-123 \\ 46 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3} \\ (177 \cdot 2) \end{array}$	$\begin{gathered} 60.94 \\ 60.92 \end{gathered}$	$\begin{aligned} & 3.95 \\ & 4.02 \end{aligned}$	$\begin{aligned} & 7.90 \\ & 7.79 \end{aligned}$
XXIV	$\begin{aligned} & \mathrm{NO}_{2} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 146-148 \\ 60 \end{gathered}$	$\begin{array}{r} \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5}{ }^{\text {r }} \\ (197 \cdot 2) \end{array}$	-	-	-
$X X \cdot V$	2-Benzothiazolyl CH_{3}	$\begin{gathered} 142-143 \\ 26 \end{gathered}$	$\underset{(285 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}^{d}}$	$\begin{aligned} & 63 \cdot 09 \\ & 63 \cdot 18 \end{aligned}$	$\begin{aligned} & 3.85 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 4.90 \\ & 4.82 \end{aligned}$
XXVI	$\begin{aligned} & \text { 3-Pyridyl } \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{gathered} 134-135 \\ 55 \end{gathered}$	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{1,1} \mathrm{NO}_{3} \\ (229 \cdot 2) \end{gathered}$	$\begin{aligned} & 68.06 \\ & 67.91 \end{aligned}$	$\begin{aligned} & 4 \cdot 80 \\ & 4 \cdot 76 \end{aligned}$	$\begin{aligned} & 6.11 \\ & 6.04 \end{aligned}$

${ }^{a}$ Compounds $I, I I, I I I, V I, V I I, X X$ were crystallized from water, IV, VIII, IX, X, XII, XXII from ethanol, V, XVIII, XIX from 50% ethanol, XIII, XVII, XXI, XXIII, XXV, XXVI from methanol, XIV from 50% methanol, $X X I V$ from 10% ethanol and compound $X I$ was sublimated; ${ }^{b}$ melting points were determined on a Kofler block and are uncorrected; ${ }^{c}$ ref. ${ }^{11}$ m.p. $152-153^{\circ} \mathrm{C}$; ${ }^{d}$ calculated/found $I / 17 \cdot 40 \%, 17 \cdot 36 \% ; X I \quad 11,79 \%, 11 \cdot 42 \% ; X V 16 \cdot 18 \%, 15 \cdot 83 \% ;{ }^{c}$ ref. ${ }^{12}$ m.p. $141^{\circ} \mathrm{C}$; ${ }^{f}$ ref. ${ }^{5}$ m.p. $175-179^{\circ} \mathrm{C}$; ${ }^{g}$ ref. ${ }^{13}$ m.p. $159-160^{\circ} \mathrm{C}$, ${ }^{h}$ ref. ${ }^{14}$ m.p. $177-178^{\circ} \mathrm{C}$; ${ }^{i}$ ref. ${ }^{15}$ m.p. $191^{\circ} \mathrm{C}$; ${ }^{j}$ ref..$^{16} 241^{\circ} \mathrm{C}$; ${ }^{k}$ ref. ${ }^{17}$ m.p. $36-37^{\circ} \mathrm{C}$; n.p. $65-70^{\circ} \mathrm{C} / 0.266 \mathrm{kPa} ;{ }^{l}$ b.p. ${ }^{\circ} \mathrm{C} / \mathrm{kPa} ;{ }^{m}$ ref. ${ }^{18}$ b.p. $125-50 / 2.53 \mathrm{kPa} ;{ }^{n}$ ref. ${ }^{5}$ m.p. $106-108^{\circ} \mathrm{C}$; ref. ${ }^{15}$ m.p. $82^{\circ} \mathrm{C}{ }^{\rho}$ ref. ${ }^{15}$ m.p. $62^{\circ} \mathrm{C}$; ${ }^{q}$ ref. ${ }^{20}$, ${ }^{r}$ ref. ${ }^{19}$.
-2-furyl)acrylic acids via the carbonylation of 2-(2-furyl)benzazoles were unsuccessful. 2-(2-Furyl)benzthiazole did not react under the conditions of the Vilsmeier reaction, while in 2-(2-furyl)benzoxazole the oxazole ring was opened in this reaction under formation of 2-hydroxyanilide-2-furancarboxylic acid (Scheme 1). 2-(2-

Scheme 1

-Furyl)benzimidazole reacted with POCl_{3} equally as other secondary amines, which prevented decarbonylation. For this reason we carried out the synthesis of 3-(5-benzazole derivatives-2-furyl)acrylic acid $X I$ and $X I I I$ by reaction of 3-(5-cyano-2-furyl)--acrylic acid ($I X$) with 2-aminothiophenol and 2-aminophenol. With all acids the isomer E was obtained $\left(v(\mathrm{CH}=\mathrm{CH}) 930 \mathrm{~cm}^{-1}\right)$. Esters $X I V\left(\right.$ ref. $\left.{ }^{17}\right), X V, X V I\left(\right.$ ref. $\left.{ }^{18}\right)$, $X V I I\left(\right.$ ref. ${ }^{5}$), $X V I I I\left(\right.$ ref. ${ }^{15}$), XIX (ref. ${ }^{15}$), XXX, XXI, XXIV (ref. ${ }^{19}$) were synthesized by esterification with methanol, while $X X V$ was obtained with diazomethane. In the case of derivatives $X X I I\left(\right.$ ref. ${ }^{20}$), $X X I I I$ and $X X V I$ the direct synthesis from aldehydes was carried out by Wittig's method.

Electron absorption spectra of the newly synthesized compounds are characterized by two absorption maxima in the $206-235 \mathrm{~nm}$ and $299-380 \mathrm{~nm}$ regions. In the case of the group of compound $I I \lambda_{\max }$ at 249 nm is also observed, in the case of compounds XIII and $X V$ the additional $\lambda_{\max }$ were at 298 and 500 nm , and 250 nm resp. In comparison with $\lambda_{\text {max }}$ of 3 -(2-furyl)acrylic acid (300 nm) it is evident that the bathochromic shift of the K band correspond to the distribution of electrons along a longer conjugated system (Table II). Among the most distinct absorption bands of the IR spectra are those of $v(\mathrm{C}=\mathrm{O})$ in the $1730-1690 \mathrm{~cm}^{-1}$ region for acids, and $1741-1704 \mathrm{~cm}^{-1}$ for esters, as well as $v(\mathrm{C}=\mathrm{C})$ at $1668-1630 \mathrm{~cm}^{-1}$ (stretching vibrations of the ethylene bond) and at 1645-1560 (stretching vibrations of $\mathrm{C}=\mathrm{C}$ in the ring). The band $946-925 \mathrm{~cm}^{-1}$ belongs to the deforming vibrations of the $\gamma(\mathrm{C}-\mathrm{H})$ bonds in a trans arrangement.
$\mathrm{p} K_{\mathrm{A}}$-Values of the acids were measured in 50% and 78% aqueous ethanol and 80% methyl cellosolve (also used in the preceding paper ${ }^{5}$), due to the poor solubility of the majority of them in water. Kinetic measurements were carried out in 60% aqueous acetone. For the correlation of the results obtained σ_{p} and σ_{m} values of substituents ${ }^{21-23}$ were used. From the correlation of the constants of hydrolysis the value of the constant of hydrolysis for the methyl ester of 3-(5-methoxycarbonyl-2-furyl)acrylic acid (XXI) was excluded. This is several times higher than the assumed one (Table III) and it correlates well in the series of 5-X-2-furancarboxylic acids, i.e. when the pos-
sibility of hydrolysis at two sites in the molecules existed, the hydrolysis of the methoxycarbonyl group on the furan nucleus took place preferentially. The high correlation coefficient (0.985) of the correlation of apparent $\mathrm{p} K_{\mathrm{A}}$ values of $3-(5-\mathrm{R}-2$-furyl)acrylic acids and the logarithms of the constants of hydrolysis of their esters (Table IV) with a gradient $\varrho=-0.525$ confirms that the use of Hammett's equation is substantiated for the acids mentioned. During a statistical treatment of apparent $\mathrm{p} K_{\mathrm{A}}$ values for single acids, as well as of the logarithms of the constants of hydrolysis of their ester a good correlatability of substituents both with the σ_{p} and with

Table II
IR and UV Characteristics of New 3-(5-Substituted-2-furyl)acrylic Acids and Their Methyl Esters; $\lambda_{\text {max }}(\mathrm{nm}) ; \tilde{v} \mathrm{~cm}^{-1}$

Compound	$\lambda_{\text {max }}$	$\log \varepsilon$	$\lambda_{\text {max }}$	$\log \varepsilon$	$v(\mathrm{C}=\mathrm{O})$	$\nu(\mathrm{C}=\mathrm{C})$	$\nu(\mathrm{CH}=\mathrm{CH})$
II	223	3.76	316	$4 \cdot 17$	1690	1631	930
	249	3.75				1560	
VIII	217	4.42	304	$4 \cdot 42$	1730	1636	926
					1703	1580	
IX	211	4.06	299	$4 \cdot 31$	1700	1650	932
						1590	
XI	227	3.92	362	4.33	1720	1645	934
						1625	
XII	235	3.97	342	4.26	1702	1630	930
						1606	
XIII	206	3.92	380	4.06	1705	1640	932
	298	$3 \cdot 70$	500	$2 \cdot 64$		1625	
XV	225	3.85	333	4. 19	1723	1636	922
	250	$3 \cdot 74$				1559	
$X X$	225	4-10	324	$4 \cdot 37$	1737	1668	925
					1720	1645	
XXI	217	$4 \cdot 09$	308	$4 \cdot 42$	1741	1648	928
					1724		
XXIII	208	$4 \cdot 27$	225	$4 \cdot 18$	1726	1630	946
						1600	
$X X V$	227	$4 \cdot 19$	360	4.33	1720	1650	936
						1590	
$X X V I$	208	$4 \cdot 40$	322	$4 \cdot 36$	1704	1664	938
						1592	

Table III

The Apparent $\mathrm{p} K_{\mathrm{A}}$ Constants of 3-(5-R-2-Furyl)acrylic Acids in Different Solvents and Rate Constants for the Hydrolysis of Their Methyl Esters ($k_{\mathrm{h}}, 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$)

Compound	$\mathrm{p} K_{\mathrm{Al}}{ }^{\text {a }}$	$\mathrm{p} K_{\mathrm{A} 2}{ }^{\text {b }}$	$\mathrm{p} K_{\mathrm{A} 3}{ }^{\text {c }}$	$k_{\mathrm{h}} \cdot 10^{3}$
I	5.98	$6 \cdot 65$	7.01	$1 \cdot 4$
II	5.78	$6 \cdot 46$	6.67	3.0
III	5.76	6.45	$6 \cdot 65$	2.9
IV	5.75	6.47	$6 \cdot 67$	2.8
V	$5 \cdot 60$	6.05	$6 \cdot 38$	$8 \cdot 6$
$V I$	$5 \cdot 46$	6.11	$6 \cdot 21$	$10 \cdot 3$
VII	5.45	5.75	6.43	21.2
VIII	$5 \cdot 28$	$5 \cdot 60$	$6 \cdot 12$	121.5
IX	$5 \cdot 15$	$5 \cdot 72$	5.98	53.8
X	$4 \cdot 88$	$5 \cdot 44$	$5 \cdot 82$	114.5
XI	-	-	$6 \cdot 41$	-
XII	-	-	$5 \cdot 90$	-

${ }^{a} 50 \%$ Ethanol; ${ }^{b} 78 \%$ ethanol; ${ }^{c} 80 \%$ methyl cellosolve.

Table IV
Statistics of the Hammett Correlation of σ_{p} and σ_{m} Substituent Constants and the Apparent $\mathrm{p} K_{\mathrm{A}}$ Values for 3-(5-R-2-Furyl)acrylic Acids or of the Rate Constants of Hydrolysis of Their Methyl Esters

Correlation	n^{a}	r^{b}	e^{c}	s_{p}^{d}	q^{e}	q^{f}	s^{g}	$\pi_{\mathrm{C}=\mathrm{C}}{ }^{h}$	
$\mathrm{p} K_{\mathrm{A} 1}-\sigma_{\mathrm{p}}$	10	0.981	-1.040	0.073	5.786	0.021	0.070	0.737	
$\mathrm{p} K_{\mathrm{A} 1}-\sigma_{\mathrm{m}}$	10	0.957	-1.245	0.102	5.864	0.073	0.078	0.835	
$\mathrm{p} \mathrm{A}_{\mathrm{A} 2}-\sigma_{\mathrm{p}}$	10	0.973	-1.254	0.082	6.424	0.016	0.091	0.889	
$\mathrm{p} \mathrm{A}_{\mathrm{A} 2}-\sigma_{\mathrm{m}}$	10	0.939	-1.485	0.094	6.513	0.063	0.092	0.996	
$\mathrm{p} K_{\mathrm{A} 3}-\mathrm{AD}$	10	0.937	-1.069	0.081	6.688	0.038	0.053	0.758	
$\mathrm{p} K_{\mathrm{A} 3}-\sigma_{\mathrm{m}}$	10	0.975	-1.364	0.107	6.691	0.047	0.084	0.915	
$\log \left(3+k_{\mathrm{h}}\right)-\sigma_{\mathrm{p}}$	9	0.995	1.957	0.074	0.468	0.005	0.069	0.966	
$\log \left(3+k_{\mathrm{h}}\right)-\sigma_{\mathrm{m}}$	9	0.972	2.279	0.106	0.313	0.092	0.082	0.999	
$\mathrm{p} K_{\mathrm{A} 1}-\left(\log 3+k_{\mathrm{h}}\right)$	9	0.985	-0.525	0.033	6.035	0.125	0.062	-	

${ }^{a}$ Number of derivatives; ${ }^{b}$ correlation coefficient; ${ }^{c}$ slope; ${ }^{d}$ slope error; ${ }^{e}$ calculated value for the unsubstituted derivative; ${ }^{f}$ error of $q ;{ }^{g}$ standard deviation from the regression line; ${ }^{h}$ transmission factor for the ethene bond calculated with the ϱ values from ${ }^{10}$ and ${ }^{6,7}$.
σ_{m} values is observed. Up to now this fact has been observed in 5-X-2-furancarboxylic acids ${ }^{6,7}$ and therefore two ϱ-values for 5 -substituted furancarboxylic acids ${ }^{10}$ were calculated. The scatter of the ϱ-values in the case of 3 -(5-R-2-furyl)acrylic acids, caused by a change of solvent, is relatively small in comparison with analogous values in the benzene series ${ }^{22}$.

The calculation of the transmission factor of the $\mathrm{C}=\mathrm{C}$ bond from the relation $\pi_{\mathrm{C}=\mathrm{C}}=\varrho_{\mathrm{Fu} / \mathrm{C}=\mathrm{c}} \varrho_{\mathrm{Fu}}$ and the application of ϱ_{Fu}-values obtained under the same working conditions for 5-X-2-furancarboxylic acids, gave the values $0.737-0.889$ for σ_{p} and $0.835-0.996$ for σ_{m} which considerably exceeded $\pi_{\mathrm{C}=\mathrm{C}}$ in the benzene series (for cinnamic acids $\pi_{\mathrm{c}=\mathrm{c}}=0.508$ (ref. ${ }^{22}$)). The same transmission factor can also be determined from preceding results in 3 -(5 -phenyl-2-furyl)acrylic acids ${ }^{5}$ where from the relation $\pi_{\mathrm{C}=\mathrm{C}}=\varrho_{\mathrm{Bz} / \mathrm{Fu} / \mathrm{C}=\mathrm{C}} / \varrho_{\mathrm{Bz} / \mathrm{Fu}}$ the values $\pi_{\mathrm{C}=\mathrm{C}}=0.829$ or 0.739 are obtained. Approximately equal transmission value of the substituent determined in both directions ${ }^{1-4}$ indicate that the direct effect of the oxygen atom on the carboxyl group in close proximity is negligible and that the large differences in $\mathrm{p} K_{\mathrm{A}}$ values of 2 -furancarboxylic acids and 3-(2-furyl)acrylic acids should be sought in the influence on the ethylene bond by the heteroatom. According to the data of the ${ }^{1} \mathrm{H}$ --NMR spectroscopy E-[3-(2-furyl)]acrylic acid exists in s-trans conformation ${ }^{24}$, which brings the ethylene group into close proximity of the furan nucleus oxygen that may affect its π-electron system directly. This can explain the decreased acidity of 3 -(2-furyl)acrylic acids and the higher transmission factor of the $\mathrm{C}=\mathrm{C}$ bond. From the measured values of the dissociation constants of 3 -[5-(3-pyridyl)-2-furyl]acrylic acid the value $\sigma_{\mathrm{p}}=0.743$ for 3-pyridyl group and analogously the value $\sigma_{\mathrm{p}}=0.26$ for the 2-benzthiazolyl group were worked out.

EXPERIMENTAL

3(5-R-2-furyl)acrylic Acids

A) A mixture of 0.1 mol of $5-\mathrm{R}-2$-furaldehyde and $20.8 \mathrm{~g}(0.2 \mathrm{~mol})$ of malonic acid in 50 ml of pyridine was heated on a boiling water bath for 3 hours. After the cessation of the CO_{2} escape the mixture was poured onto 250 g of ice acidified with hydrochloric acid. The precipitated mixture was filtered off under suction and crystallized from a suitable solvent. In this manner acids $I, I I, V I I I, I X$ and $X I I$ were prepared.
B) A mixture of 0.1 mol of $5-\mathrm{R}-2$-furaldehyde, 0.25 mol of anhydrous potassium acetate and 0.7 mol of acetic anhydride was heated at $140-150^{\circ} \mathrm{C}$ for 4 h . After cooling the mixture was poured onto 250 g of ice, the precipitated product was filtered off under suction, and crystallized from a suitable solvent. In this manner acids $I I I-V I$ were prepared.

3-[5-(2-Benzthiazolyl)-2-furyl]acrylic Acid (XI)

A mixture of $16.3 \mathrm{~g}(0.1 \mathrm{~mol})$ of 3-(5-cyano-2-furyl)acrylic acid ($1 X$) and $12.5 \mathrm{~g}(0.1 \mathrm{~mol})$ of 2-aminothiophenol was refluxed in 30 ml of toluene until the escape of ammonia ceased. The mixture was allowed to cool and the separated precipitate was filtered off, washed with water and sublimated in a vacuum.

3-[5-(2-Benzoxazolyl)-2-furyl]acrylic Acid (XIII)
A mixture of $16.3 \mathrm{~g}(0.1 \mathrm{~mol})$ of 3-(5-cyano-2-furyl)acrylic acid ($I X$) and $10.1 \mathrm{~g}(0.1 \mathrm{~mol})$ of 2-aminophenol was heated at $200^{\circ} \mathrm{C}$ until the escape of ammonia ceased. The melt was extracted with warm benzene, the extract was treated with charcoal and evaporated and the residue dissolved in a benzene-ether mixture and separated chromatographically on an alumina column. The strongly fluorescing fraction was collected and the solid substance was obtained by evaporation of the solution.

Methyl Esters of 3-(5-R-2-Furyl)acrylic Acids

A) A mixture of $0 \cdot 1 \mathrm{~mol}$ of $3-(5-\mathrm{R}-2$-furyl)acrylic acid (I-VIII, X), 100 ml of methanol and 3 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, was refluxed for 3 h . Methanol was distilled off (60 ml), the mixture was poured onto ice and neutralized, and the precipitated ester ($X I V-X X I, X X I V$) was filtered off under suction, dissolved in chloroform, washed with a NaHCO_{3} solution, dried and evaporated. The residue was purified by crystallization.
$B)$ An ethereal diazomethane solution (0.02 mol) was added under stirring to a suspension of $2.7 \mathrm{~g}(0.01 \mathrm{~mol})$ of 3-[5-(2-benzthiazolyl)-2-furyl]acrylic acid (XI) in 200 ml of ether and the mixture was allowed to stand at room temperature for 4 h . Ether was evaporated, the residue was treated with a NaHCO_{3} solution in order to eliminate the acid, and the remaining ester $X X V$ was crystallized from methanol.
C) $3.4 \mathrm{~g}(0.01 \mathrm{~mol})$ of methoxycarbonylmethylidenetriphenylphosphorane, 0.01 mol of $5-\mathrm{R}-$ - 2 -furaldehyde and 50 ml of benzene were refluxed for 20 h , benzene was evaporated and the reaction mixture separated by column chromatography on alumina. In this manner esters $X X I$, $X X I H$ and $X X I V$ were prepared.

Measurements

Electron absorption spectra were measured in the $200-480 \mathrm{~nm}$ region with a registration spectrophotometer UV VIS (Zeiss) at room temperature in ethanol using 1 cm cells and $3.10^{-5} \mathrm{~m}$ concentration of the substances. The measurement of the infrared spectra was carried out with a two-beam spectrophotometer UR-20 (Zeiss) using the KBr technique (2 mg of substance per 1 g of KBr). The calibration of the apparatus was carried out with a polystyrene foil.

Apparent dissociation constants were determined by potentiometric titration of $5 \cdot 10^{-3} \mathrm{~m}$ solutions of corresponding acids in 50% and 78% aqueous ethanol and 80% aqueous methyl cellosolve with a 0.1 m tetramethylammonium hydroxide solution under nitrogen. For measurement Radiometer pHM 4d with a glass electrode was used, also Radiometer G 200 B and a calomel electrode K 100, and an automatic burette Radiometer ABU 1c. The accuracy of the measurement was 0.02 pH . For checking the working conditions the following values were measured: for benzoic acid in 78% ethanol $\mathrm{p} K_{\mathrm{A}}=6.36$ (lit. ${ }^{25} 6.37$) and for 3-(2-furyl)acrylic acid $\mathrm{p} K_{\mathrm{A}}=$ $=6.50$ (lit. ${ }^{25} 6.49$). Statistical parameters and correlation dependences with $\sigma_{\mathrm{m}}, \sigma_{\mathrm{p}}$ and the logarithm of the constants of hydrolysis of esters are given in Table IV.

Kinetic measurements: 50 ml of a $5.10^{-5} \mathrm{M}$ solution of ester in 60% aqueous acetone (v / v) and 50 ml of a $0.01 \mathrm{~m}-\mathrm{KOH}$ solution in 60% aqueous acetone were mixed and stirred in a thermostat for 30 min at $25^{\circ} \mathrm{C}$. At selected time intervals (15 min) samples (10 ml) of the solution were withdrawn, then poured into $0.01 \mathrm{~m} \mathrm{HCl}(10 \mathrm{ml})$ and excess acid was determined by titration with $0.01 \mathrm{~m}-\mathrm{KOH}$ using a TTT Ic titrator (Radiometer). The accuracy of the measurement was checked by blank experiments before measurement. Constants of hydrolysis were calculated from the equation for the second order reaction and they were worked up by the least squares
method using a Hewlett Packard 9810 A calculator. Statistical parameters and the correlations are listed in Table IV.

We thank Dr F. Považanec, Department of Organic Chemistry, Slovak Institute of Technology, Bratislava, for the synthesis of 3-(5-cyano-2-furyl)acrylic acid.

REFERENCES

1. Krutošiková A., Kováč J., Rentka J., Čakrt M.: This Journal 39, 767 (1974).
2. Krutošiková A., Surả J., Kovác J., Kalfus K.: This Journal 40, 3357 (1975).
3. Fišera L., Surá J., Kováć J., Lucký M.: This Journal 39, 1711 (1974).
4. Fišera L., Kováč J., Lucký M., Surá J.: Chem. Zvesti 28, 386 (1974).
5. Krutošiková A., Surá J., Kováč J., Juhás S.: This Journal 40, 3362 (1975).
6. Imoto E., Otsuji Y., Inoue H.: Nippon Kagaku Zasshi 77, 809 (1956).
7. Imoto E., Otsuji Y.: Bull. Univ. Osaka Pref. A6, 115 (1958).
8. Otsuji Y., Imoto E.: Nippon Kagaku Zasshi 80, 1297 (1959).
9. Otsuji Y., Kubo K., Imoto E.: Nippon Kagaku Zasshi 80, 1300 (1959).
10. Freeman F.: J. Chem. Educ. 47, 140 (1970).
11. Taylor D. A. H.: J. Chem. Soc. 1959, 2767.
12. Rajagopalan S., Raman P. V.: Organic Syntheses, Vol. 3, p. 425. Wiley-Interscience, New York 1967.
13. Nazarova Z. N.: Zh. Obshch. Khim. 25, 539 (1955).
14. Nazarova Z. N., Pimenova A. N.: Zh. Obshch. Khim. 27, 2842 (1957).
15. Dorofeenko G. N., Karban V. I., Dulenko L. V., Novikov V. Z.: Izv. Vyssh. Ucheb. Zaved. Khim. Tekhnol. 7, 432 (1964).
16. Venter K. K., Giller S. A., Cirule V. W.: Izv. Akad. Nauk Latv. SSR, Ser. Khim. 1962, 131.
17. Ernest I., Staněk J.: Czech. 88 760; Chem. Abstr. 54, 8849 (1960).
18. Reese J.: Ger. 85I; Chem. Abstr. 50, 8738 (1956).
19. Natt M. P.: U.S. 2890 982; Chem. Abstr. 53, 20089 (1959).
20. Nazarova Z. N., Popov I. I.: U.S.S.R. 382 616; Chem. Abstr. 50, 8730 (1956).
21. McDaniel D. H., Brown H. C.: J. Org. Chem. 23, 425 (1958).
22. Jaffé H. H.: Chem. Rev. 53, 191 (1953).
23. Bordwell F. G., Bouton P. J.: J. Amer. Chem. Soc. 78, 854 (1956).
24. Huckerby T. N.: Tetrahedron Lett. 1971, 353.
25. Price Ch. C., Dudby E. A.: J. Amer. Chem. Soc. 78, 68 (1956).

Translated by Ž. Procházka.

[^0]: * Part C in the series Furan Derivatives; Part XCIX: Chem. Zvesti, in press.

